New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exmoeu | GIF version |
Description: Existence in terms of "at most one" and uniqueness. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
exmoeu | ⊢ (∃xφ ↔ (∃*xφ → ∃!xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2209 | . . . 4 ⊢ (∃*xφ ↔ (∃xφ → ∃!xφ)) | |
2 | 1 | biimpi 186 | . . 3 ⊢ (∃*xφ → (∃xφ → ∃!xφ)) |
3 | 2 | com12 27 | . 2 ⊢ (∃xφ → (∃*xφ → ∃!xφ)) |
4 | 1 | biimpri 197 | . . . 4 ⊢ ((∃xφ → ∃!xφ) → ∃*xφ) |
5 | euex 2227 | . . . 4 ⊢ (∃!xφ → ∃xφ) | |
6 | 4, 5 | imim12i 53 | . . 3 ⊢ ((∃*xφ → ∃!xφ) → ((∃xφ → ∃!xφ) → ∃xφ)) |
7 | peirce 172 | . . 3 ⊢ (((∃xφ → ∃!xφ) → ∃xφ) → ∃xφ) | |
8 | 6, 7 | syl 15 | . 2 ⊢ ((∃*xφ → ∃!xφ) → ∃xφ) |
9 | 3, 8 | impbii 180 | 1 ⊢ (∃xφ ↔ (∃*xφ → ∃!xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |