New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6ibr | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ibr.1 | ⊢ (φ → (ψ → χ)) |
syl6ibr.2 | ⊢ (θ ↔ χ) |
Ref | Expression |
---|---|
syl6ibr | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ibr.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | syl6ibr.2 | . . 3 ⊢ (θ ↔ χ) | |
3 | 2 | biimpri 197 | . 2 ⊢ (χ → θ) |
4 | 1, 3 | syl6 29 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr4g 261 imp4a 572 3impexpbicom 1367 nic-ax 1438 nfimd 1808 equs5e 1888 euim 2254 mopick2 2271 2moswap 2279 2eu1 2284 necon3ad 2553 necon3d 2555 necon1d 2586 ralrimd 2703 spcimegf 2934 spcegf 2936 spcimedv 2939 spc2gv 2943 spc3gv 2945 rspcimedv 2958 eqsbc2 3104 ra5 3131 tpid3g 3832 pwpw0 3856 sssn 3865 pwsnALT 3883 ssiun 4009 ssiun2 4010 spfininduct 4541 dmcosseq 4974 ssreseq 4998 ssrnres 5060 fnun 5190 f1oun 5305 fvopab3ig 5388 chfnrn 5400 dffo5 5425 fvclss 5463 fnoprabg 5586 ovigg 5597 leltctr 6213 spacind 6288 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |