NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impl GIF version

Theorem impl 603
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
impl.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
impl (((φ ψ) χ) → θ)

Proof of Theorem impl
StepHypRef Expression
1 impl.1 . . 3 (φ → ((ψ χ) → θ))
21exp3a 425 . 2 (φ → (ψ → (χθ)))
32imp31 421 1 (((φ ψ) χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sbc2iedv  3115  csbie2t  3181  foco2  5427
  Copyright terms: Public domain W3C validator