NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exbiri GIF version

Theorem exbiri 605
Description: Inference form of exbir 1365. This proof is exbiriVD in set.mm automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
Hypothesis
Ref Expression
exbiri.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
exbiri (φ → (ψ → (θχ)))

Proof of Theorem exbiri
StepHypRef Expression
1 exbiri.1 . . 3 ((φ ψ) → (χθ))
21biimpar 471 . 2 (((φ ψ) θ) → χ)
32exp31 587 1 (φ → (ψ → (θχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  biimp3ar  1282  eqrdav  2352  ncfin  6248
  Copyright terms: Public domain W3C validator