| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ancrd | GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (φ → (ψ → (χ ∧ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (φ → (ψ → χ)) | |
| 2 | idd 21 | . 2 ⊢ (φ → (ψ → ψ)) | |
| 3 | 1, 2 | jcad 519 | 1 ⊢ (φ → (ψ → (χ ∧ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: impac 604 euan 2261 2eu1 2284 reupick 3540 spfininduct 4541 vinf 4556 ssrnres 5060 funssres 5145 dffo4 5424 dffo5 5425 |
| Copyright terms: Public domain | W3C validator |