New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jaoian | GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((φ ∧ ψ) → χ) |
jaoian.2 | ⊢ ((θ ∧ ψ) → χ) |
Ref | Expression |
---|---|
jaoian | ⊢ (((φ ∨ θ) ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
3 | jaoian.2 | . . . 4 ⊢ ((θ ∧ ψ) → χ) | |
4 | 3 | ex 423 | . . 3 ⊢ (θ → (ψ → χ)) |
5 | 2, 4 | jaoi 368 | . 2 ⊢ ((φ ∨ θ) → (ψ → χ)) |
6 | 5 | imp 418 | 1 ⊢ (((φ ∨ θ) ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: ccase 912 |
Copyright terms: Public domain | W3C validator |