NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 520
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (φψ)
jca31.2 (φχ)
jca31.3 (φθ)
Assertion
Ref Expression
jca31 (φ → ((ψ χ) θ))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (φψ)
2 jca31.2 . . 3 (φχ)
31, 2jca 518 . 2 (φ → (ψ χ))
4 jca31.3 . 2 (φθ)
53, 4jca 518 1 (φ → ((ψ χ) θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  3jca  1132  syl21anc  1181  f1oiso2  5501
  Copyright terms: Public domain W3C validator