NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctild GIF version

Theorem jctild 527
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctild.1 (φ → (ψχ))
jctild.2 (φθ)
Assertion
Ref Expression
jctild (φ → (ψ → (θ χ)))

Proof of Theorem jctild
StepHypRef Expression
1 jctild.2 . . 3 (φθ)
21a1d 22 . 2 (φ → (ψθ))
3 jctild.1 . 2 (φ → (ψχ))
42, 3jcad 519 1 (φ → (ψ → (θ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anc2li  540  ee12an  1363  ax12olem1  1927  2eu1  2284  xpcan  5058  xpcan2  5059
  Copyright terms: Public domain W3C validator