NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctird GIF version

Theorem jctird 528
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1 (φ → (ψχ))
jctird.2 (φθ)
Assertion
Ref Expression
jctird (φ → (ψ → (χ θ)))

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2 (φ → (ψχ))
2 jctird.2 . . 3 (φθ)
32a1d 22 . 2 (φ → (ψθ))
41, 3jcad 519 1 (φ → (ψ → (χ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anc2ri  541  fnun  5190  fco  5232
  Copyright terms: Public domain W3C validator