Proof of Theorem merco1lem3
Step | Hyp | Ref
| Expression |
1 | | merco1lem2 1482 |
. . 3
⊢ (((φ → φ) → ⊥ ) → (((φ → φ) → (φ → ⊥ )) → ⊥
)) |
2 | | retbwax2 1481 |
. . . 4
⊢ ((((φ → φ) → (φ → ⊥ )) → (φ → φ)) → (φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ)))) |
3 | | merco1lem2 1482 |
. . . 4
⊢ (((((φ → φ) → (φ → ⊥ )) → (φ → φ)) → (φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ)))) → ((((φ → φ) → ⊥ ) → (((φ → φ) → (φ → ⊥ )) → ⊥ )) →
(φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ ((((φ → φ) → ⊥ ) → (((φ → φ) → (φ → ⊥ )) → ⊥ )) →
(φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ)))) |
5 | 1, 4 | ax-mp 5 |
. 2
⊢ (φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) |
6 | | merco1lem2 1482 |
. . 3
⊢ (((χ → φ) → ⊥ ) → (((φ → ψ) → (χ → ⊥ )) → ⊥
)) |
7 | | retbwax2 1481 |
. . . 4
⊢ ((((φ → ψ) → (χ → ⊥ )) → (χ → φ)) → ((φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) → (((φ → ψ) → (χ → ⊥ )) → (χ → φ)))) |
8 | | merco1lem2 1482 |
. . . 4
⊢ (((((φ → ψ) → (χ → ⊥ )) → (χ → φ)) → ((φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) → (((φ → ψ) → (χ → ⊥ )) → (χ → φ)))) → ((((χ → φ) → ⊥ ) → (((φ → ψ) → (χ → ⊥ )) → ⊥ )) →
((φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) → (((φ → ψ) → (χ → ⊥ )) → (χ → φ))))) |
9 | 7, 8 | ax-mp 5 |
. . 3
⊢ ((((χ → φ) → ⊥ ) → (((φ → ψ) → (χ → ⊥ )) → ⊥ )) →
((φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) → (((φ → ψ) → (χ → ⊥ )) → (χ → φ)))) |
10 | 6, 9 | ax-mp 5 |
. 2
⊢ ((φ → (((φ → φ) → (φ → ⊥ )) → (φ → φ))) → (((φ → ψ) → (χ → ⊥ )) → (χ → φ))) |
11 | 5, 10 | ax-mp 5 |
1
⊢ (((φ → ψ) → (χ → ⊥ )) → (χ → φ)) |