New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr4ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (φ ↔ ψ) |
3bitr4i.2 | ⊢ (χ ↔ φ) |
3bitr4i.3 | ⊢ (θ ↔ ψ) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (θ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (χ ↔ φ) | |
2 | 3bitr4i.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 3bitr4i.3 | . . 3 ⊢ (θ ↔ ψ) | |
4 | 2, 3 | bitr4i 243 | . 2 ⊢ (φ ↔ θ) |
5 | 1, 4 | bitr2i 241 | 1 ⊢ (θ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm4.78 565 xor 861 nanbi 1294 nic-ax 1438 2sb5 2112 2sb6 2113 2sb5rf 2117 2sb6rf 2118 moabs 2248 2eu7 2290 2eu8 2291 risset 2662 r19.35 2759 reuind 3040 undif3 3516 unab 3522 inab 3523 inssdif0 3618 ssundif 3634 snss 3839 pwtp 3885 uni0b 3917 iinuni 4050 ssofss 4077 df1c2 4169 elxpk2 4198 dfuni12 4292 insklem 4305 dfuni3 4316 addcass 4416 ncfinraise 4482 ncfinlower 4484 nnadjoinlem1 4520 nnpweq 4524 sfin112 4530 dfop2lem1 4574 dfproj12 4577 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 elxp2 4803 xpiundir 4819 ralxpf 4828 brswap2 4861 inopab 4863 dfrn4 4905 dmeq0 4923 brres 4950 dfima3 4952 dmres 4987 rnuni 5039 dmsnn0 5065 cnvresima 5078 imaco 5087 dfcnv2 5101 fnopabg 5206 f1ocnvb 5299 imaiun 5465 isocnv2 5493 dfdm4 5508 dfrn5 5509 brimage 5794 otsnelsi3 5806 composeex 5821 disjex 5824 fnsex 5833 fnpprod 5844 crossex 5851 clos1baseima 5884 ecdmn0 5968 xpassen 6058 mucnc 6132 df0c2 6138 tcdi 6165 ce0nnul 6178 tc11 6229 finnc 6244 csucex 6260 nncdiv3lem1 6276 |
Copyright terms: Public domain | W3C validator |