New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr4ri | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (φ ↔ ψ) |
3bitr4i.2 | ⊢ (χ ↔ φ) |
3bitr4i.3 | ⊢ (θ ↔ ψ) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (θ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (χ ↔ φ) | |
2 | 3bitr4i.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 3bitr4i.3 | . . 3 ⊢ (θ ↔ ψ) | |
4 | 2, 3 | bitr4i 243 | . 2 ⊢ (φ ↔ θ) |
5 | 1, 4 | bitr2i 241 | 1 ⊢ (θ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm4.78 565 xor 861 nanbi 1294 nic-ax 1438 2sb5 2112 2sb6 2113 2sb5rf 2117 2sb6rf 2118 moabs 2248 2eu7 2290 2eu8 2291 risset 2661 r19.35 2758 reuind 3039 undif3 3515 unab 3521 inab 3522 inssdif0 3617 ssundif 3633 snss 3838 pwtp 3884 uni0b 3916 iinuni 4049 ssofss 4076 df1c2 4168 elxpk2 4197 dfuni12 4291 insklem 4304 dfuni3 4315 addcass 4415 ncfinraise 4481 ncfinlower 4483 nnadjoinlem1 4519 nnpweq 4523 sfin112 4529 dfop2lem1 4573 dfproj12 4576 setconslem2 4732 setconslem3 4733 setconslem7 4737 dfswap2 4741 elxp2 4802 xpiundir 4818 ralxpf 4827 brswap2 4860 inopab 4862 dfrn4 4904 dmeq0 4922 brres 4949 dfima3 4951 dmres 4986 rnuni 5038 dmsnn0 5064 cnvresima 5077 imaco 5086 dfcnv2 5100 fnopabg 5205 f1ocnvb 5298 imaiun 5464 isocnv2 5492 dfdm4 5507 dfrn5 5508 brimage 5793 otsnelsi3 5805 composeex 5820 disjex 5823 fnsex 5832 fnpprod 5843 crossex 5850 clos1baseima 5883 ecdmn0 5967 xpassen 6057 mucnc 6131 df0c2 6137 tcdi 6164 ce0nnul 6177 tc11 6228 finnc 6243 csucex 6259 nncdiv3lem1 6275 |
Copyright terms: Public domain | W3C validator |