New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exmoeu2 | GIF version |
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
exmoeu2 | ⊢ (∃xφ → (∃*xφ ↔ ∃!xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2242 | . 2 ⊢ (∃!xφ ↔ (∃xφ ∧ ∃*xφ)) | |
2 | 1 | baibr 872 | 1 ⊢ (∃xφ → (∃*xφ ↔ ∃!xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 ∃!weu 2204 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: dffun8 5135 fneu 5188 |
Copyright terms: Public domain | W3C validator |