NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exmoeu2 GIF version

Theorem exmoeu2 2247
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeu2 (xφ → (∃*xφ∃!xφ))

Proof of Theorem exmoeu2
StepHypRef Expression
1 eu5 2242 . 2 (∃!xφ ↔ (xφ ∃*xφ))
21baibr 872 1 (xφ → (∃*xφ∃!xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541  ∃!weu 2204  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by:  dffun8  5135  fneu  5188
  Copyright terms: Public domain W3C validator