New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3an1i | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
mp3an1i.1 | ⊢ ψ |
mp3an1i.2 | ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) |
Ref | Expression |
---|---|
mp3an1i | ⊢ (φ → ((χ ∧ θ) → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1i.1 | . . 3 ⊢ ψ | |
2 | mp3an1i.2 | . . . 4 ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) | |
3 | 2 | com12 27 | . . 3 ⊢ ((ψ ∧ χ ∧ θ) → (φ → τ)) |
4 | 1, 3 | mp3an1 1264 | . 2 ⊢ ((χ ∧ θ) → (φ → τ)) |
5 | 4 | com12 27 | 1 ⊢ (φ → ((χ ∧ θ) → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |