| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp3anl1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| mp3anl1.1 | ⊢ φ |
| mp3anl1.2 | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
| Ref | Expression |
|---|---|
| mp3anl1 | ⊢ (((ψ ∧ χ) ∧ θ) → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anl1.1 | . . 3 ⊢ φ | |
| 2 | mp3anl1.2 | . . . 4 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) | |
| 3 | 2 | ex 423 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → (θ → τ)) |
| 4 | 1, 3 | mp3an1 1264 | . 2 ⊢ ((ψ ∧ χ) → (θ → τ)) |
| 5 | 4 | imp 418 | 1 ⊢ (((ψ ∧ χ) ∧ θ) → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: mp3anr1 1274 |
| Copyright terms: Public domain | W3C validator |