NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp3an1 GIF version

Theorem mp3an1 1264
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
mp3an1.1 φ
mp3an1.2 ((φ ψ χ) → θ)
Assertion
Ref Expression
mp3an1 ((ψ χ) → θ)

Proof of Theorem mp3an1
StepHypRef Expression
1 mp3an1.1 . 2 φ
2 mp3an1.2 . . 3 ((φ ψ χ) → θ)
323expb 1152 . 2 ((φ (ψ χ)) → θ)
41, 3mpan 651 1 ((ψ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  mp3an12  1267  mp3an1i  1270  mp3anl1  1271  mp3an  1277  opkelcokg  4262  opkelimagekg  4272  ltfintri  4467  vfinspnn  4542  vfinspclt  4553  spaccl  6287  spacind  6288  nchoicelem3  6292  nchoicelem4  6293  nchoicelem6  6295  nchoicelem9  6298  nchoicelem12  6301  nchoicelem14  6303  nchoicelem17  6306
  Copyright terms: Public domain W3C validator