New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3anr2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.) |
Ref | Expression |
---|---|
mp3anr2.1 | ⊢ χ |
mp3anr2.2 | ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → τ) |
Ref | Expression |
---|---|
mp3anr2 | ⊢ ((φ ∧ (ψ ∧ θ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anr2.1 | . . 3 ⊢ χ | |
2 | mp3anr2.2 | . . . 4 ⊢ ((φ ∧ (ψ ∧ χ ∧ θ)) → τ) | |
3 | 2 | ancoms 439 | . . 3 ⊢ (((ψ ∧ χ ∧ θ) ∧ φ) → τ) |
4 | 1, 3 | mp3anl2 1272 | . 2 ⊢ (((ψ ∧ θ) ∧ φ) → τ) |
5 | 4 | ancoms 439 | 1 ⊢ ((φ ∧ (ψ ∧ θ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |