New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3anl2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
mp3anl2.1 | ⊢ ψ |
mp3anl2.2 | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
Ref | Expression |
---|---|
mp3anl2 | ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anl2.1 | . . 3 ⊢ ψ | |
2 | mp3anl2.2 | . . . 4 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) | |
3 | 2 | ex 423 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → (θ → τ)) |
4 | 1, 3 | mp3an2 1265 | . 2 ⊢ ((φ ∧ χ) → (θ → τ)) |
5 | 4 | imp 418 | 1 ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: mp3anr2 1275 ncslemuc 6256 |
Copyright terms: Public domain | W3C validator |