NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpancom GIF version

Theorem mpancom 650
Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpancom.1 (ψφ)
mpancom.2 ((φ ψ) → χ)
Assertion
Ref Expression
mpancom (ψχ)

Proof of Theorem mpancom
StepHypRef Expression
1 mpancom.1 . 2 (ψφ)
2 id 19 . 2 (ψψ)
3 mpancom.2 . 2 ((φ ψ) → χ)
41, 2, 3syl2anc 642 1 (ψχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  mpan  651  spesbc  3128  nnc3n3p1  6279  nnc3n3p2  6280  nnc3p1n3p2  6281
  Copyright terms: Public domain W3C validator