New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpan | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpan.1 | ⊢ φ |
mpan.2 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
mpan | ⊢ (ψ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan.1 | . . 3 ⊢ φ | |
2 | 1 | a1i 10 | . 2 ⊢ (ψ → φ) |
3 | mpan.2 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
4 | 2, 3 | mpancom 650 | 1 ⊢ (ψ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mp2an 653 mpanl12 663 mp3an1 1264 mp3an12 1267 mp3an13 1268 csbex 3148 sbnfc2 3197 ssdifss 3398 uneqdifeq 3639 elssuni 3920 riinrab 4042 opkelcokg 4262 elssetkg 4270 opkelimagekg 4272 uni1exg 4293 imagekexg 4312 uniexg 4317 intexg 4320 addcexg 4394 peano5 4410 0cminle 4462 spfininduct 4541 vfinspss 4552 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 copsexg 4608 imaexg 4747 siexg 4753 opeliunxp 4821 xpss2 4858 cnvexg 5102 xpexg 5115 fco 5232 fssres 5239 fvopab3g 5387 ffvelrni 5417 fvconst2 5454 oprabid 5551 caovcl 5624 caovass 5628 caovdi 5635 txpexg 5785 ins2exg 5796 imageexg 5801 txpcofun 5804 fullfunexg 5860 fvfullfun 5865 brfullfung 5866 ecelqsi 5981 ectocl 5993 pmex 6006 map0 6026 f1oen 6034 enrflxg 6035 cnven 6046 xpsnen2g 6055 enmap2lem3 6066 enmap1lem3 6072 enprmaplem5 6081 nenpw1pwlem1 6085 nulnnc 6119 ovmuc 6131 ovcelem1 6172 lec0cg 6199 sbthlem1 6204 nc0suc 6218 dflec3 6222 letc 6232 ce2t 6236 muc0or 6253 nchoicelem9 6298 nchoicelem17 6306 frecexg 6313 frecxp 6315 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |