NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spesbc GIF version

Theorem spesbc 3128
Description: Existence form of spsbc 3059. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc ([̣A / xφxφ)

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3056 . . 3 ([̣A / xφA V)
2 rspesbca 3127 . . 3 ((A V A / xφ) → x V φ)
31, 2mpancom 650 . 2 ([̣A / xφx V φ)
4 rexv 2874 . 2 (x V φxφ)
53, 4sylib 188 1 ([̣A / xφxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1541   wcel 1710  wrex 2616  Vcvv 2860  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048
This theorem is referenced by:  spesbcd  3129  opelopabsb  4698
  Copyright terms: Public domain W3C validator