| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nnc3p1n3p2 | GIF version | ||
| Description: One more than three times a natural is not two more than three times a natural. Final part of Theorem 3.4 of [Specker] p. 973. (Contributed by SF, 12-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| nnc3p1n3p2 | ⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (((A +c A) +c A) +c 1c) = (((B +c B) +c B) +c 2c)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnc3n3p1 6279 | . . 3 ⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ ((A +c A) +c A) = (((B +c B) +c B) +c 1c)) | |
| 2 | nncaddccl 4420 | . . . . . 6 ⊢ ((A ∈ Nn ∧ A ∈ Nn ) → (A +c A) ∈ Nn ) | |
| 3 | 2 | anidms 626 | . . . . 5 ⊢ (A ∈ Nn → (A +c A) ∈ Nn ) | 
| 4 | nncaddccl 4420 | . . . . 5 ⊢ (((A +c A) ∈ Nn ∧ A ∈ Nn ) → ((A +c A) +c A) ∈ Nn ) | |
| 5 | 3, 4 | mpancom 650 | . . . 4 ⊢ (A ∈ Nn → ((A +c A) +c A) ∈ Nn ) | 
| 6 | nncaddccl 4420 | . . . . . . 7 ⊢ ((B ∈ Nn ∧ B ∈ Nn ) → (B +c B) ∈ Nn ) | |
| 7 | 6 | anidms 626 | . . . . . 6 ⊢ (B ∈ Nn → (B +c B) ∈ Nn ) | 
| 8 | nncaddccl 4420 | . . . . . 6 ⊢ (((B +c B) ∈ Nn ∧ B ∈ Nn ) → ((B +c B) +c B) ∈ Nn ) | |
| 9 | 7, 8 | mpancom 650 | . . . . 5 ⊢ (B ∈ Nn → ((B +c B) +c B) ∈ Nn ) | 
| 10 | peano2 4404 | . . . . 5 ⊢ (((B +c B) +c B) ∈ Nn → (((B +c B) +c B) +c 1c) ∈ Nn ) | |
| 11 | 9, 10 | syl 15 | . . . 4 ⊢ (B ∈ Nn → (((B +c B) +c B) +c 1c) ∈ Nn ) | 
| 12 | suc11nnc 4559 | . . . 4 ⊢ ((((A +c A) +c A) ∈ Nn ∧ (((B +c B) +c B) +c 1c) ∈ Nn ) → ((((A +c A) +c A) +c 1c) = ((((B +c B) +c B) +c 1c) +c 1c) ↔ ((A +c A) +c A) = (((B +c B) +c B) +c 1c))) | |
| 13 | 5, 11, 12 | syl2an 463 | . . 3 ⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((((A +c A) +c A) +c 1c) = ((((B +c B) +c B) +c 1c) +c 1c) ↔ ((A +c A) +c A) = (((B +c B) +c B) +c 1c))) | 
| 14 | 1, 13 | mtbird 292 | . 2 ⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (((A +c A) +c A) +c 1c) = ((((B +c B) +c B) +c 1c) +c 1c)) | 
| 15 | addcass 4416 | . . . 4 ⊢ ((((B +c B) +c B) +c 1c) +c 1c) = (((B +c B) +c B) +c (1c +c 1c)) | |
| 16 | 1p1e2c 6156 | . . . . 5 ⊢ (1c +c 1c) = 2c | |
| 17 | 16 | addceq2i 4388 | . . . 4 ⊢ (((B +c B) +c B) +c (1c +c 1c)) = (((B +c B) +c B) +c 2c) | 
| 18 | 15, 17 | eqtr2i 2374 | . . 3 ⊢ (((B +c B) +c B) +c 2c) = ((((B +c B) +c B) +c 1c) +c 1c) | 
| 19 | 18 | eqeq2i 2363 | . 2 ⊢ ((((A +c A) +c A) +c 1c) = (((B +c B) +c B) +c 2c) ↔ (((A +c A) +c A) +c 1c) = ((((B +c B) +c B) +c 1c) +c 1c)) | 
| 20 | 14, 19 | sylnibr 296 | 1 ⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (((A +c A) +c A) +c 1c) = (((B +c B) +c B) +c 2c)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 1cc1c 4135 Nn cnnc 4374 +c cplc 4376 2cc2c 6095 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-cup 5743 df-disj 5745 df-addcfn 5747 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 df-2c 6105 | 
| This theorem is referenced by: nchoicelem2 6291 | 
| Copyright terms: Public domain | W3C validator |