NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpd3an23 GIF version

Theorem mpd3an23 1279
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1 (φψ)
mpd3an23.2 (φχ)
mpd3an23.3 ((φ ψ χ) → θ)
Assertion
Ref Expression
mpd3an23 (φθ)

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 19 . 2 (φφ)
2 mpd3an23.1 . 2 (φψ)
3 mpd3an23.2 . 2 (φχ)
4 mpd3an23.3 . 2 ((φ ψ χ) → θ)
51, 2, 3, 4syl3anc 1182 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator