New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3and | GIF version |
Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
mp3and.1 | ⊢ (φ → ψ) |
mp3and.2 | ⊢ (φ → χ) |
mp3and.3 | ⊢ (φ → θ) |
mp3and.4 | ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) |
Ref | Expression |
---|---|
mp3and | ⊢ (φ → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3and.1 | . . 3 ⊢ (φ → ψ) | |
2 | mp3and.2 | . . 3 ⊢ (φ → χ) | |
3 | mp3and.3 | . . 3 ⊢ (φ → θ) | |
4 | 1, 2, 3 | 3jca 1132 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
5 | mp3and.4 | . 2 ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) | |
6 | 4, 5 | mpd 14 | 1 ⊢ (φ → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |