| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp3and | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| mp3and.1 | ⊢ (φ → ψ) |
| mp3and.2 | ⊢ (φ → χ) |
| mp3and.3 | ⊢ (φ → θ) |
| mp3and.4 | ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) |
| Ref | Expression |
|---|---|
| mp3and | ⊢ (φ → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3and.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | mp3and.2 | . . 3 ⊢ (φ → χ) | |
| 3 | mp3and.3 | . . 3 ⊢ (φ → θ) | |
| 4 | 1, 2, 3 | 3jca 1132 | . 2 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
| 5 | mp3and.4 | . 2 ⊢ (φ → ((ψ ∧ χ ∧ θ) → τ)) | |
| 6 | 4, 5 | mpd 14 | 1 ⊢ (φ → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |