NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtand GIF version

Theorem mtand 640
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypotheses
Ref Expression
mtand.1 (φ → ¬ χ)
mtand.2 ((φ ψ) → χ)
Assertion
Ref Expression
mtand (φ → ¬ ψ)

Proof of Theorem mtand
StepHypRef Expression
1 mtand.1 . 2 (φ → ¬ χ)
2 mtand.2 . . 3 ((φ ψ) → χ)
32ex 423 . 2 (φ → (ψχ))
41, 3mtod 168 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  tfinnn  4535  sfin111  4537  nchoicelem5  6294
  Copyright terms: Public domain W3C validator