| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (φ → ¬ χ) |
| mtand.2 | ⊢ ((φ ∧ ψ) → χ) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (φ → ¬ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (φ → ¬ χ) | |
| 2 | mtand.2 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
| 3 | 2 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
| 4 | 1, 3 | mtod 168 | 1 ⊢ (φ → ¬ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: tfinnn 4535 sfin111 4537 nchoicelem5 6294 |
| Copyright terms: Public domain | W3C validator |