New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtand | GIF version |
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
mtand.1 | ⊢ (φ → ¬ χ) |
mtand.2 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
mtand | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtand.1 | . 2 ⊢ (φ → ¬ χ) | |
2 | mtand.2 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
3 | 2 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
4 | 1, 3 | mtod 168 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: tfinnn 4535 sfin111 4537 nchoicelem5 6294 |
Copyright terms: Public domain | W3C validator |