Step | Hyp | Ref
| Expression |
1 | | df-sfin 4447 |
. . . . . . 7
⊢ ( Sfin (N,
P) ↔ (N ∈ Nn ∧ P ∈ Nn ∧ ∃a(℘1a ∈ N ∧ ℘a ∈ P))) |
2 | 1 | simp2bi 971 |
. . . . . 6
⊢ ( Sfin (N,
P) → P ∈ Nn ) |
3 | 2 | adantl 452 |
. . . . 5
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → P ∈ Nn ) |
4 | | ltfinirr 4458 |
. . . . 5
⊢ (P ∈ Nn → ¬ ⟪P, P⟫
∈ <fin ) |
5 | 3, 4 | syl 15 |
. . . 4
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ¬ ⟪P, P⟫
∈ <fin ) |
6 | | sfinltfin 4536 |
. . . 4
⊢ ((( Sfin (M,
P) ∧ Sfin (N,
P)) ∧
⟪M, N⟫ ∈
<fin ) → ⟪P,
P⟫ ∈ <fin ) |
7 | 5, 6 | mtand 640 |
. . 3
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ¬ ⟪M, N⟫
∈ <fin ) |
8 | | sfinltfin 4536 |
. . . . . 6
⊢ ((( Sfin (N,
P) ∧ Sfin (M,
P)) ∧
⟪N, M⟫ ∈
<fin ) → ⟪P,
P⟫ ∈ <fin ) |
9 | 8 | ex 423 |
. . . . 5
⊢ (( Sfin (N,
P) ∧ Sfin (M,
P)) → (⟪N, M⟫
∈ <fin → ⟪P, P⟫
∈ <fin )) |
10 | 9 | ancoms 439 |
. . . 4
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → (⟪N, M⟫
∈ <fin → ⟪P, P⟫
∈ <fin )) |
11 | 5, 10 | mtod 168 |
. . 3
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ¬ ⟪N, M⟫
∈ <fin ) |
12 | | ioran 476 |
. . 3
⊢ (¬
(⟪M, N⟫ ∈
<fin ∨ ⟪N, M⟫
∈ <fin ) ↔ (¬
⟪M, N⟫ ∈
<fin ∧ ¬ ⟪N, M⟫
∈ <fin )) |
13 | 7, 11, 12 | sylanbrc 645 |
. 2
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ¬ (⟪M, N⟫
∈ <fin
∨ ⟪N, M⟫ ∈
<fin )) |
14 | | df-sfin 4447 |
. . . . . . 7
⊢ ( Sfin (M,
P) ↔ (M ∈ Nn ∧ P ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ P))) |
15 | 14 | simp1bi 970 |
. . . . . 6
⊢ ( Sfin (M,
P) → M ∈ Nn ) |
16 | 15 | adantr 451 |
. . . . 5
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → M ∈ Nn ) |
17 | 1 | simp1bi 970 |
. . . . . 6
⊢ ( Sfin (N,
P) → N ∈ Nn ) |
18 | 17 | adantl 452 |
. . . . 5
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → N ∈ Nn ) |
19 | | ne0i 3557 |
. . . . . . . . . 10
⊢ (℘1a ∈ M → M ≠
∅) |
20 | 19 | adantr 451 |
. . . . . . . . 9
⊢ ((℘1a ∈ M ∧ ℘a ∈ P) →
M ≠ ∅) |
21 | 20 | exlimiv 1634 |
. . . . . . . 8
⊢ (∃a(℘1a ∈ M ∧ ℘a ∈ P) →
M ≠ ∅) |
22 | 21 | 3ad2ant3 978 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ P ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ P)) →
M ≠ ∅) |
23 | 14, 22 | sylbi 187 |
. . . . . 6
⊢ ( Sfin (M,
P) → M ≠ ∅) |
24 | 23 | adantr 451 |
. . . . 5
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → M ≠ ∅) |
25 | | ltfintri 4467 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ M ≠ ∅) →
(⟪M, N⟫ ∈
<fin ∨ M = N ∨ ⟪N,
M⟫ ∈ <fin )) |
26 | 16, 18, 24, 25 | syl3anc 1182 |
. . . 4
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → (⟪M, N⟫
∈ <fin
∨ M = N ∨
⟪N, M⟫ ∈
<fin )) |
27 | | df-3or 935 |
. . . 4
⊢ ((⟪M, N⟫
∈ <fin
∨ M = N ∨
⟪N, M⟫ ∈
<fin ) ↔ ((⟪M,
N⟫ ∈ <fin
∨ M = N) ∨
⟪N, M⟫ ∈
<fin )) |
28 | 26, 27 | sylib 188 |
. . 3
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ((⟪M, N⟫
∈ <fin
∨ M = N) ∨
⟪N, M⟫ ∈
<fin )) |
29 | | or32 513 |
. . 3
⊢ (((⟪M, N⟫
∈ <fin
∨ M = N) ∨
⟪N, M⟫ ∈
<fin ) ↔ ((⟪M,
N⟫ ∈ <fin
∨ ⟪N, M⟫ ∈
<fin ) ∨ M = N)) |
30 | 28, 29 | sylib 188 |
. 2
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → ((⟪M, N⟫
∈ <fin
∨ ⟪N, M⟫ ∈
<fin ) ∨ M = N)) |
31 | | orel1 371 |
. 2
⊢ (¬
(⟪M, N⟫ ∈
<fin ∨ ⟪N, M⟫
∈ <fin ) →
(((⟪M, N⟫ ∈
<fin ∨ ⟪N, M⟫
∈ <fin )
∨ M = N) → M =
N)) |
32 | 13, 30, 31 | sylc 56 |
1
⊢ (( Sfin (M,
P) ∧ Sfin (N,
P)) → M = N) |