Step | Hyp | Ref
| Expression |
1 | | tfinnnlem1 4534 |
. . . . 5
⊢ {n ∣ ∀y ∈ n (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)}
∈ V |
2 | | tfineq 4489 |
. . . . . . . . . 10
⊢ (n = 0c → Tfin n =
Tfin
0c) |
3 | | tfin0c 4498 |
. . . . . . . . . 10
⊢ Tfin 0c =
0c |
4 | 2, 3 | syl6eq 2401 |
. . . . . . . . 9
⊢ (n = 0c → Tfin n =
0c) |
5 | 4 | eleq2d 2420 |
. . . . . . . 8
⊢ (n = 0c → ({a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n ↔ {a
∣ ∃x ∈ y a = Tfin
x} ∈
0c)) |
6 | 5 | imbi2d 307 |
. . . . . . 7
⊢ (n = 0c → ((y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
0c))) |
7 | 6 | raleqbi1dv 2816 |
. . . . . 6
⊢ (n = 0c → (∀y ∈ n (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ ∀y ∈
0c (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
0c))) |
8 | | df-ral 2620 |
. . . . . . 7
⊢ (∀y ∈ 0c (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ 0c) ↔ ∀y(y ∈
0c → (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
0c))) |
9 | | el0c 4422 |
. . . . . . . . 9
⊢ (y ∈
0c ↔ y = ∅) |
10 | | el0c 4422 |
. . . . . . . . . . 11
⊢ ({a ∣ ∃x ∈ y a = Tfin
x} ∈
0c ↔ {a ∣ ∃x ∈ y a = Tfin x} =
∅) |
11 | | ab0 3570 |
. . . . . . . . . . 11
⊢ ({a ∣ ∃x ∈ y a = Tfin
x} = ∅
↔ ∀a ¬ ∃x ∈ y a = Tfin x) |
12 | 10, 11 | bitri 240 |
. . . . . . . . . 10
⊢ ({a ∣ ∃x ∈ y a = Tfin
x} ∈
0c ↔ ∀a ¬ ∃x ∈ y a = Tfin x) |
13 | 12 | imbi2i 303 |
. . . . . . . . 9
⊢ ((y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ 0c) ↔ (y ⊆ Nn → ∀a ¬ ∃x ∈ y a = Tfin x)) |
14 | 9, 13 | imbi12i 316 |
. . . . . . . 8
⊢ ((y ∈
0c → (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
0c)) ↔ (y = ∅ → (y
⊆ Nn →
∀a
¬ ∃x
∈ y
a = Tfin x))) |
15 | 14 | albii 1566 |
. . . . . . 7
⊢ (∀y(y ∈
0c → (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
0c)) ↔ ∀y(y = ∅ → (y
⊆ Nn →
∀a
¬ ∃x
∈ y
a = Tfin x))) |
16 | | 0ex 4111 |
. . . . . . . 8
⊢ ∅ ∈
V |
17 | | sseq1 3293 |
. . . . . . . . 9
⊢ (y = ∅ →
(y ⊆
Nn ↔ ∅
⊆ Nn
)) |
18 | | rexeq 2809 |
. . . . . . . . . . 11
⊢ (y = ∅ →
(∃x
∈ y
a = Tfin x
↔ ∃x ∈ ∅ a = Tfin x)) |
19 | 18 | notbid 285 |
. . . . . . . . . 10
⊢ (y = ∅ →
(¬ ∃x ∈ y a = Tfin x
↔ ¬ ∃x ∈ ∅ a = Tfin x)) |
20 | 19 | albidv 1625 |
. . . . . . . . 9
⊢ (y = ∅ →
(∀a
¬ ∃x
∈ y
a = Tfin x
↔ ∀a ¬ ∃x ∈ ∅ a = Tfin x)) |
21 | 17, 20 | imbi12d 311 |
. . . . . . . 8
⊢ (y = ∅ →
((y ⊆
Nn → ∀a ¬
∃x ∈ y a = Tfin
x) ↔ (∅ ⊆ Nn → ∀a ¬ ∃x ∈ ∅ a = Tfin x))) |
22 | 16, 21 | ceqsalv 2886 |
. . . . . . 7
⊢ (∀y(y = ∅ →
(y ⊆
Nn → ∀a ¬
∃x ∈ y a = Tfin
x)) ↔ (∅ ⊆ Nn → ∀a ¬ ∃x ∈ ∅ a = Tfin x)) |
23 | 8, 15, 22 | 3bitri 262 |
. . . . . 6
⊢ (∀y ∈ 0c (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ 0c) ↔ (∅ ⊆ Nn → ∀a ¬ ∃x ∈ ∅ a = Tfin x)) |
24 | 7, 23 | syl6bb 252 |
. . . . 5
⊢ (n = 0c → (∀y ∈ n (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ (∅ ⊆ Nn → ∀a ¬
∃x ∈ ∅ a = Tfin
x))) |
25 | | tfineq 4489 |
. . . . . . . 8
⊢ (n = k →
Tfin n = Tfin
k) |
26 | 25 | eleq2d 2420 |
. . . . . . 7
⊢ (n = k →
({a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin n ↔ {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin k)) |
27 | 26 | imbi2d 307 |
. . . . . 6
⊢ (n = k →
((y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n) ↔ (y
⊆ Nn →
{a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin k))) |
28 | 27 | raleqbi1dv 2816 |
. . . . 5
⊢ (n = k →
(∀y
∈ n
(y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n) ↔ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))) |
29 | | tfineq 4489 |
. . . . . . . . 9
⊢ (n = (k
+c 1c) → Tfin n =
Tfin (k +c
1c)) |
30 | 29 | eleq2d 2420 |
. . . . . . . 8
⊢ (n = (k
+c 1c) → ({a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n ↔ {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin (k +c
1c))) |
31 | 30 | imbi2d 307 |
. . . . . . 7
⊢ (n = (k
+c 1c) → ((y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin (k +c
1c)))) |
32 | 31 | raleqbi1dv 2816 |
. . . . . 6
⊢ (n = (k
+c 1c) → (∀y ∈ n (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ ∀y ∈ (k +c
1c)(y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin (k +c
1c)))) |
33 | | sseq1 3293 |
. . . . . . . 8
⊢ (y = z →
(y ⊆
Nn ↔ z
⊆ Nn
)) |
34 | | rexeq 2809 |
. . . . . . . . . 10
⊢ (y = z →
(∃x
∈ y
a = Tfin x
↔ ∃x ∈ z a = Tfin x)) |
35 | 34 | abbidv 2468 |
. . . . . . . . 9
⊢ (y = z →
{a ∣
∃x ∈ y a = Tfin
x} = {a
∣ ∃x ∈ z a = Tfin
x}) |
36 | 35 | eleq1d 2419 |
. . . . . . . 8
⊢ (y = z →
({a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin (k +c 1c) ↔
{a ∣
∃x ∈ z a = Tfin
x} ∈
Tfin (k +c
1c))) |
37 | 33, 36 | imbi12d 311 |
. . . . . . 7
⊢ (y = z →
((y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin (k +c 1c)) ↔
(z ⊆
Nn → {a
∣ ∃x ∈ z a = Tfin
x} ∈
Tfin (k +c
1c)))) |
38 | 37 | cbvralv 2836 |
. . . . . 6
⊢ (∀y ∈ (k
+c 1c)(y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin (k
+c 1c)) ↔ ∀z ∈ (k
+c 1c)(z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ Tfin (k
+c 1c))) |
39 | 32, 38 | syl6bb 252 |
. . . . 5
⊢ (n = (k
+c 1c) → (∀y ∈ n (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin n)
↔ ∀z ∈ (k +c
1c)(z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈
Tfin (k +c
1c)))) |
40 | | tfineq 4489 |
. . . . . . . 8
⊢ (n = N →
Tfin n = Tfin
N) |
41 | 40 | eleq2d 2420 |
. . . . . . 7
⊢ (n = N →
({a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin n ↔ {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin N)) |
42 | 41 | imbi2d 307 |
. . . . . 6
⊢ (n = N →
((y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n) ↔ (y
⊆ Nn →
{a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin N))) |
43 | 42 | raleqbi1dv 2816 |
. . . . 5
⊢ (n = N →
(∀y
∈ n
(y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin n) ↔ ∀y ∈ N (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin N))) |
44 | | rex0 3564 |
. . . . . . 7
⊢ ¬ ∃x ∈ ∅ a = Tfin
x |
45 | 44 | ax-gen 1546 |
. . . . . 6
⊢ ∀a ¬
∃x ∈ ∅ a = Tfin
x |
46 | 45 | a1i 10 |
. . . . 5
⊢ (∅ ⊆ Nn → ∀a ¬ ∃x ∈ ∅ a = Tfin x) |
47 | | elsuc 4414 |
. . . . . . . . . . 11
⊢ (z ∈ (k +c 1c) ↔
∃b ∈ k ∃w ∈ ∼ bz = (b ∪ {w})) |
48 | | sseq1 3293 |
. . . . . . . . . . . . . . . . . 18
⊢ (y = b →
(y ⊆
Nn ↔ b
⊆ Nn
)) |
49 | | rexeq 2809 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (y = b →
(∃x
∈ y
a = Tfin x
↔ ∃x ∈ b a = Tfin x)) |
50 | 49 | abbidv 2468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (y = b →
{a ∣
∃x ∈ y a = Tfin
x} = {a
∣ ∃x ∈ b a = Tfin
x}) |
51 | 50 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . 18
⊢ (y = b →
({a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin k ↔ {a
∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k)) |
52 | 48, 51 | imbi12d 311 |
. . . . . . . . . . . . . . . . 17
⊢ (y = b →
((y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin k) ↔ (b
⊆ Nn →
{a ∣
∃x ∈ b a = Tfin
x} ∈
Tfin k))) |
53 | 52 | rspcv 2952 |
. . . . . . . . . . . . . . . 16
⊢ (b ∈ k → (∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k)
→ (b ⊆ Nn → {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k))) |
54 | 53 | ad2antrl 708 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) → (∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k)
→ (b ⊆ Nn → {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k))) |
55 | | simprl 732 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → b ⊆ Nn
) |
56 | | simp3 957 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn ) ∧ {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) → {a
∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) |
57 | | simplrr 737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → w ∈ ∼ b) |
58 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ w ∈
V |
59 | 58 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (w ∈ ∼ b ↔ ¬ w
∈ b) |
60 | 57, 59 | sylib 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → ¬ w
∈ b) |
61 | | elequ1 1713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (w = x →
(w ∈
b ↔ x ∈ b)) |
62 | 61 | notbid 285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (w = x →
(¬ w ∈ b ↔
¬ x ∈
b)) |
63 | 60, 62 | syl5ibcom 211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → (w =
x → ¬ x ∈ b)) |
64 | 63 | con2d 107 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → (x
∈ b
→ ¬ w = x)) |
65 | 64 | imp 418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) → ¬ w = x) |
66 | | simpll 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → ((k
∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b))
∧ (b ⊆ Nn ∧ w ∈ Nn
))) |
67 | | simprr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → w ∈ Nn
) |
68 | 66, 67 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → w
∈ Nn
) |
69 | 66, 55 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → b
⊆ Nn
) |
70 | | simplr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → x
∈ b) |
71 | 69, 70 | sseldd 3275 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → x
∈ Nn
) |
72 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → Tfin w =
Tfin x) |
73 | | tfin11 4494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((w ∈ Nn ∧ x ∈ Nn ∧ Tfin w =
Tfin x) → w =
x) |
74 | 68, 71, 72, 73 | syl3anc 1182 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) ∧ Tfin w =
Tfin x) → w =
x) |
75 | 65, 74 | mtand 640 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) ∧ x ∈ b) → ¬ Tfin w =
Tfin x) |
76 | 75 | nrexdv 2718 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → ¬ ∃x ∈ b Tfin w =
Tfin x) |
77 | 76 | 3adant3 975 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn ) ∧ {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) → ¬ ∃x ∈ b Tfin w =
Tfin x) |
78 | | tfinex 4486 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Tfin w
∈ V |
79 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (a = Tfin
w → (a = Tfin
x ↔ Tfin w =
Tfin x)) |
80 | 79 | rexbidv 2636 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (a = Tfin
w → (∃x ∈ b a = Tfin
x ↔ ∃x ∈ b Tfin w =
Tfin x)) |
81 | 78, 80 | elab 2986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Tfin w
∈ {a
∣ ∃x ∈ b a = Tfin
x} ↔ ∃x ∈ b Tfin w =
Tfin x) |
82 | 77, 81 | sylnibr 296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn ) ∧ {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) → ¬ Tfin w
∈ {a
∣ ∃x ∈ b a = Tfin
x}) |
83 | 78 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (({a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k ∧ ¬ Tfin w
∈ {a
∣ ∃x ∈ b a = Tfin
x}) → ({a ∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)) |
84 | 56, 82, 83 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn ) ∧ {a ∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)) |
85 | 84 | 3expia 1153 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → ({a
∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c))) |
86 | 55, 85 | embantd 50 |
. . . . . . . . . . . . . . . . . 18
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ (b ⊆ Nn ∧ w ∈ Nn )) → ((b
⊆ Nn →
{a ∣
∃x ∈ b a = Tfin
x} ∈
Tfin k) → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c))) |
87 | 86 | ex 423 |
. . . . . . . . . . . . . . . . 17
⊢ ((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) → ((b
⊆ Nn ∧ w ∈ Nn ) →
((b ⊆
Nn → {a
∣ ∃x ∈ b a = Tfin
x} ∈
Tfin k) → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)))) |
88 | 87 | com23 72 |
. . . . . . . . . . . . . . . 16
⊢ ((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) → ((b
⊆ Nn →
{a ∣
∃x ∈ b a = Tfin
x} ∈
Tfin k) → ((b
⊆ Nn ∧ w ∈ Nn ) →
({a ∣
∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)))) |
89 | | sseq1 3293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (z = (b ∪
{w}) → (z ⊆ Nn ↔ (b ∪
{w}) ⊆
Nn )) |
90 | 58 | snss 3839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (w ∈ Nn ↔ {w} ⊆ Nn
) |
91 | 90 | anbi2i 675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((b ⊆ Nn ∧ w ∈ Nn ) ↔ (b ⊆ Nn ∧ {w} ⊆ Nn
)) |
92 | | unss 3438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((b ⊆ Nn ∧ {w} ⊆ Nn ) ↔ (b ∪
{w}) ⊆
Nn ) |
93 | 91, 92 | bitr2i 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((b ∪ {w})
⊆ Nn ↔
(b ⊆
Nn ∧ w ∈ Nn )) |
94 | 89, 93 | syl6bb 252 |
. . . . . . . . . . . . . . . . . 18
⊢ (z = (b ∪
{w}) → (z ⊆ Nn ↔ (b ⊆ Nn ∧ w ∈ Nn
))) |
95 | | rexeq 2809 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (z = (b ∪
{w}) → (∃x ∈ z a = Tfin
x ↔ ∃x ∈ (b ∪
{w})a =
Tfin x)) |
96 | | rexun 3444 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃x ∈ (b ∪
{w})a =
Tfin x ↔ (∃x ∈ b a = Tfin
x ∨ ∃x ∈ {w}a = Tfin
x)) |
97 | 95, 96 | syl6bb 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (z = (b ∪
{w}) → (∃x ∈ z a = Tfin
x ↔ (∃x ∈ b a = Tfin
x ∨ ∃x ∈ {w}a = Tfin
x))) |
98 | 97 | abbidv 2468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (z = (b ∪
{w}) → {a ∣ ∃x ∈ z a = Tfin
x} = {a
∣ (∃x ∈ b a = Tfin
x ∨ ∃x ∈ {w}a = Tfin
x)}) |
99 | | df-sn 3742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ { Tfin w} =
{a ∣
a = Tfin w} |
100 | | tfineq 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (x = w →
Tfin x = Tfin
w) |
101 | 100 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (x = w →
(a = Tfin x
↔ a = Tfin w)) |
102 | 58, 101 | rexsn 3769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃x ∈ {w}a = Tfin
x ↔ a = Tfin
w) |
103 | 102 | abbii 2466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {a ∣ ∃x ∈ {w}a = Tfin
x} = {a
∣ a =
Tfin w} |
104 | 99, 103 | eqtr4i 2376 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ { Tfin w} =
{a ∣
∃x ∈ {w}a = Tfin
x} |
105 | 104 | uneq2i 3416 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({a ∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
= ({a ∣
∃x ∈ b a = Tfin
x} ∪ {a ∣ ∃x ∈ {w}a = Tfin
x}) |
106 | | unab 3522 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({a ∣ ∃x ∈ b a = Tfin
x} ∪ {a ∣ ∃x ∈ {w}a = Tfin
x}) = {a ∣ (∃x ∈ b a = Tfin
x ∨ ∃x ∈ {w}a = Tfin
x)} |
107 | 105, 106 | eqtr2i 2374 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {a ∣ (∃x ∈ b a = Tfin
x ∨ ∃x ∈ {w}a = Tfin
x)} = ({a ∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w}) |
108 | 98, 107 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . 19
⊢ (z = (b ∪
{w}) → {a ∣ ∃x ∈ z a = Tfin
x} = ({a ∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})) |
109 | 108 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . 18
⊢ (z = (b ∪
{w}) → ({a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c 1c) ↔
({a ∣
∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c))) |
110 | 94, 109 | imbi12d 311 |
. . . . . . . . . . . . . . . . 17
⊢ (z = (b ∪
{w}) → ((z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ ( Tfin k
+c 1c)) ↔ ((b ⊆ Nn ∧ w ∈ Nn ) → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)))) |
111 | 110 | biimprcd 216 |
. . . . . . . . . . . . . . . 16
⊢ (((b ⊆ Nn ∧ w ∈ Nn ) → ({a
∣ ∃x ∈ b a = Tfin
x} ∪ { Tfin w})
∈ ( Tfin k
+c 1c)) → (z = (b ∪
{w}) → (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ ( Tfin k
+c 1c)))) |
112 | 88, 111 | syl6 29 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) → ((b
⊆ Nn →
{a ∣
∃x ∈ b a = Tfin
x} ∈
Tfin k) → (z =
(b ∪ {w}) → (z
⊆ Nn →
{a ∣
∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c))))) |
113 | 54, 112 | syld 40 |
. . . . . . . . . . . . . 14
⊢ ((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) → (∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k)
→ (z = (b ∪ {w})
→ (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c))))) |
114 | 113 | imp 418 |
. . . . . . . . . . . . 13
⊢ (((k ∈ Nn ∧ (b ∈ k ∧ w ∈ ∼ b)) ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
→ (z = (b ∪ {w})
→ (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c)))) |
115 | 114 | an32s 779 |
. . . . . . . . . . . 12
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (b ∈ k ∧ w ∈ ∼ b))
→ (z = (b ∪ {w})
→ (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c)))) |
116 | 115 | rexlimdvva 2746 |
. . . . . . . . . . 11
⊢ ((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
→ (∃b ∈ k ∃w ∈ ∼ bz = (b ∪ {w})
→ (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c)))) |
117 | 47, 116 | syl5bi 208 |
. . . . . . . . . 10
⊢ ((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
→ (z ∈ (k
+c 1c) → (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ ( Tfin k
+c 1c)))) |
118 | 117 | imp32 422 |
. . . . . . . . 9
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (z ∈ (k
+c 1c) ∧
z ⊆
Nn )) → {a ∣ ∃x ∈ z a = Tfin
x} ∈ (
Tfin k +c
1c)) |
119 | | simpll 730 |
. . . . . . . . . 10
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (z ∈ (k
+c 1c) ∧
z ⊆
Nn )) → k
∈ Nn
) |
120 | | ne0i 3557 |
. . . . . . . . . . 11
⊢ (z ∈ (k +c 1c) →
(k +c
1c) ≠ ∅) |
121 | 120 | ad2antrl 708 |
. . . . . . . . . 10
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (z ∈ (k
+c 1c) ∧
z ⊆
Nn )) → (k +c 1c) ≠
∅) |
122 | | tfinsuc 4499 |
. . . . . . . . . 10
⊢ ((k ∈ Nn ∧ (k +c 1c) ≠
∅) → Tfin (k
+c 1c) = ( Tfin k
+c 1c)) |
123 | 119, 121,
122 | syl2anc 642 |
. . . . . . . . 9
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (z ∈ (k
+c 1c) ∧
z ⊆
Nn )) → Tfin (k
+c 1c) = ( Tfin k
+c 1c)) |
124 | 118, 123 | eleqtrrd 2430 |
. . . . . . . 8
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ (z ∈ (k
+c 1c) ∧
z ⊆
Nn )) → {a ∣ ∃x ∈ z a = Tfin
x} ∈
Tfin (k +c
1c)) |
125 | 124 | expr 598 |
. . . . . . 7
⊢ (((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
∧ z ∈ (k
+c 1c)) → (z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ Tfin (k
+c 1c))) |
126 | 125 | ralrimiva 2698 |
. . . . . 6
⊢ ((k ∈ Nn ∧ ∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin k))
→ ∀z ∈ (k +c
1c)(z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin
x} ∈
Tfin (k +c
1c))) |
127 | 126 | ex 423 |
. . . . 5
⊢ (k ∈ Nn → (∀y ∈ k (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin k) → ∀z ∈ (k
+c 1c)(z ⊆ Nn → {a ∣ ∃x ∈ z a = Tfin x}
∈ Tfin (k
+c 1c)))) |
128 | 1, 24, 28, 39, 43, 46, 127 | finds 4412 |
. . . 4
⊢ (N ∈ Nn → ∀y ∈ N (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin
x} ∈
Tfin N)) |
129 | | sseq1 3293 |
. . . . . 6
⊢ (y = A →
(y ⊆
Nn ↔ A
⊆ Nn
)) |
130 | | rexeq 2809 |
. . . . . . . 8
⊢ (y = A →
(∃x
∈ y
a = Tfin x
↔ ∃x ∈ A a = Tfin x)) |
131 | 130 | abbidv 2468 |
. . . . . . 7
⊢ (y = A →
{a ∣
∃x ∈ y a = Tfin
x} = {a
∣ ∃x ∈ A a = Tfin
x}) |
132 | 131 | eleq1d 2419 |
. . . . . 6
⊢ (y = A →
({a ∣
∃x ∈ y a = Tfin
x} ∈
Tfin N ↔ {a
∣ ∃x ∈ A a = Tfin
x} ∈
Tfin N)) |
133 | 129, 132 | imbi12d 311 |
. . . . 5
⊢ (y = A →
((y ⊆
Nn → {a
∣ ∃x ∈ y a = Tfin
x} ∈
Tfin N) ↔ (A
⊆ Nn →
{a ∣
∃x ∈ A a = Tfin
x} ∈
Tfin N))) |
134 | 133 | rspccv 2953 |
. . . 4
⊢ (∀y ∈ N (y ⊆ Nn → {a ∣ ∃x ∈ y a = Tfin x}
∈ Tfin N)
→ (A ∈ N →
(A ⊆
Nn → {a
∣ ∃x ∈ A a = Tfin
x} ∈
Tfin N))) |
135 | 128, 134 | syl 15 |
. . 3
⊢ (N ∈ Nn → (A ∈ N →
(A ⊆
Nn → {a
∣ ∃x ∈ A a = Tfin
x} ∈
Tfin N))) |
136 | 135 | com23 72 |
. 2
⊢ (N ∈ Nn → (A ⊆ Nn → (A ∈ N → {a
∣ ∃x ∈ A a = Tfin
x} ∈
Tfin N))) |
137 | 136 | 3imp 1145 |
1
⊢ ((N ∈ Nn ∧ A ⊆ Nn ∧ A ∈ N) → {a
∣ ∃x ∈ A a = Tfin
x} ∈
Tfin N) |