NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mtod GIF version

Theorem mtod 168
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
mtod.1 (φ → ¬ χ)
mtod.2 (φ → (ψχ))
Assertion
Ref Expression
mtod (φ → ¬ ψ)

Proof of Theorem mtod
StepHypRef Expression
1 mtod.2 . 2 (φ → (ψχ))
2 mtod.1 . . 3 (φ → ¬ χ)
32a1d 22 . 2 (φ → (ψ → ¬ χ))
41, 3pm2.65d 166 1 (φ → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mtoi  169  mtbid  291  mtbird  292  mtand  640  mtord  641  ltfinasym  4460  lenltfin  4469  tfinltfin  4501  nnadjoin  4520  sfin111  4536  vfinncvntnn  4548  enprmaplem3  6078
  Copyright terms: Public domain W3C validator