New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtod | GIF version |
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mtod.1 | ⊢ (φ → ¬ χ) |
mtod.2 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
mtod | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtod.2 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | mtod.1 | . . 3 ⊢ (φ → ¬ χ) | |
3 | 2 | a1d 22 | . 2 ⊢ (φ → (ψ → ¬ χ)) |
4 | 1, 3 | pm2.65d 166 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mtoi 169 mtbid 291 mtbird 292 mtand 640 mtord 641 ltfinasym 4460 lenltfin 4469 tfinltfin 4501 nnadjoin 4520 sfin111 4536 vfinncvntnn 4548 enprmaplem3 6078 |
Copyright terms: Public domain | W3C validator |