NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nan GIF version

Theorem nan 563
Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
nan ((φ → ¬ (ψ χ)) ↔ ((φ ψ) → ¬ χ))

Proof of Theorem nan
StepHypRef Expression
1 impexp 433 . 2 (((φ ψ) → ¬ χ) ↔ (φ → (ψ → ¬ χ)))
2 imnan 411 . . 3 ((ψ → ¬ χ) ↔ ¬ (ψ χ))
32imbi2i 303 . 2 ((φ → (ψ → ¬ χ)) ↔ (φ → ¬ (ψ χ)))
41, 3bitr2i 241 1 ((φ → ¬ (ψ χ)) ↔ ((φ ψ) → ¬ χ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm4.15  564
  Copyright terms: Public domain W3C validator