| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.15 | GIF version | ||
| Description: Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| pm4.15 | ⊢ (((φ ∧ ψ) → ¬ χ) ↔ ((ψ ∧ χ) → ¬ φ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con2b 324 | . 2 ⊢ (((ψ ∧ χ) → ¬ φ) ↔ (φ → ¬ (ψ ∧ χ))) | |
| 2 | nan 563 | . 2 ⊢ ((φ → ¬ (ψ ∧ χ)) ↔ ((φ ∧ ψ) → ¬ χ)) | |
| 3 | 1, 2 | bitr2i 241 | 1 ⊢ (((φ ∧ ψ) → ¬ χ) ↔ ((ψ ∧ χ) → ¬ φ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |