New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.15 | GIF version |
Description: Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
pm4.15 | ⊢ (((φ ∧ ψ) → ¬ χ) ↔ ((ψ ∧ χ) → ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2b 324 | . 2 ⊢ (((ψ ∧ χ) → ¬ φ) ↔ (φ → ¬ (ψ ∧ χ))) | |
2 | nan 563 | . 2 ⊢ ((φ → ¬ (ψ ∧ χ)) ↔ ((φ ∧ ψ) → ¬ χ)) | |
3 | 1, 2 | bitr2i 241 | 1 ⊢ (((φ ∧ ψ) → ¬ χ) ↔ ((ψ ∧ χ) → ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |