| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nanbi1i | GIF version | ||
| Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nanbii.1 | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| nanbi1i | ⊢ ((φ ⊼ χ) ↔ (ψ ⊼ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nanbii.1 | . 2 ⊢ (φ ↔ ψ) | |
| 2 | nanbi1 1295 | . 2 ⊢ ((φ ↔ ψ) → ((φ ⊼ χ) ↔ (ψ ⊼ χ))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((φ ⊼ χ) ↔ (ψ ⊼ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ⊼ wnan 1287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |