| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nexdh | GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| nexdh.1 | ⊢ (φ → ∀xφ) |
| nexdh.2 | ⊢ (φ → ¬ ψ) |
| Ref | Expression |
|---|---|
| nexdh | ⊢ (φ → ¬ ∃xψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nexdh.1 | . . 3 ⊢ (φ → ∀xφ) | |
| 2 | nexdh.2 | . . 3 ⊢ (φ → ¬ ψ) | |
| 3 | 1, 2 | alrimih 1565 | . 2 ⊢ (φ → ∀x ¬ ψ) |
| 4 | alnex 1543 | . 2 ⊢ (∀x ¬ ψ ↔ ¬ ∃xψ) | |
| 5 | 3, 4 | sylib 188 | 1 ⊢ (φ → ¬ ∃xψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: nexd 1771 |
| Copyright terms: Public domain | W3C validator |