NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nexd GIF version

Theorem nexd 1771
Description: Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nexd.1 xφ
nexd.2 (φ → ¬ ψ)
Assertion
Ref Expression
nexd (φ → ¬ xψ)

Proof of Theorem nexd
StepHypRef Expression
1 nexd.1 . . 3 xφ
21nfri 1762 . 2 (φxφ)
3 nexd.2 . 2 (φ → ¬ ψ)
42, 3nexdh 1589 1 (φ → ¬ xψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nexdv  1916
  Copyright terms: Public domain W3C validator