NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfdv GIF version

Theorem nfdv 1639
Description: Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfdv.1 (φ → (ψxψ))
Assertion
Ref Expression
nfdv (φ → Ⅎxψ)
Distinct variable group:   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem nfdv
StepHypRef Expression
1 nfdv.1 . . 3 (φ → (ψxψ))
21alrimiv 1631 . 2 (φx(ψxψ))
3 df-nf 1545 . 2 (Ⅎxψx(ψxψ))
42, 3sylibr 203 1 (φ → Ⅎxψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator