NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exlimddv GIF version

Theorem exlimddv 1638
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypotheses
Ref Expression
exlimddv.1 (φxψ)
exlimddv.2 ((φ ψ) → χ)
Assertion
Ref Expression
exlimddv (φχ)
Distinct variable groups:   χ,x   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem exlimddv
StepHypRef Expression
1 exlimddv.1 . 2 (φxψ)
2 exlimddv.2 . . . 4 ((φ ψ) → χ)
32ex 423 . . 3 (φ → (ψχ))
43exlimdv 1636 . 2 (φ → (xψχ))
51, 4mpd 14 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator