New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (φ → ∃xψ) |
exlimddv.2 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
exlimddv | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (φ → ∃xψ) | |
2 | exlimddv.2 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
3 | 2 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
4 | 3 | exlimdv 1636 | . 2 ⊢ (φ → (∃xψ → χ)) |
5 | 1, 4 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |