New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alrimiv.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
alrimiv | ⊢ (φ → ∀xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (φ → ∀xφ) | |
2 | alrimiv.1 | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | alrimih 1565 | 1 ⊢ (φ → ∀xψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem is referenced by: alrimivv 1632 nfdv 1639 cbvalivw 1674 spOLD 1748 ax9 1949 cbvald 2008 ax10-16 2190 ax11eq 2193 ax11el 2194 axext4 2337 eqrdv 2351 abbi2dv 2469 abbi1dv 2470 elex22 2871 elex2 2872 spcimdv 2937 pm13.183 2980 moeq3 3014 sbc2or 3055 sbcthdv 3062 sbcimdv 3108 ssrdv 3279 ss2abdv 3340 abssdv 3341 dfnfc2 3910 intss 3948 intab 3957 dfiin2g 4001 setswith 4322 iotaval 4351 iota5 4360 iotabidv 4361 sfintfin 4533 vfinspss 4552 vfinspclt 4553 phidisjnn 4616 eqoprrdv 4855 funco 5143 funun 5147 fununi 5161 funcnvuni 5162 nfunsn 5354 funsi 5521 funoprabg 5584 mpteq12dv 5657 fntxp 5805 fnpprod 5844 clos1is 5882 fundmen 6044 enpw1 6063 enmap2lem4 6067 enmap1lem4 6073 enprmaplem3 6079 ncprc 6125 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |