New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnfOLD | GIF version |
Description: Obsolete proof of nfnf 1845 as of 30-Dec-2017. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfnfOLD | ⊢ ℲxℲyφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1545 | . 2 ⊢ (Ⅎyφ ↔ ∀y(φ → ∀yφ)) | |
2 | nfal.1 | . . . . . 6 ⊢ Ⅎxφ | |
3 | 2 | a1i 10 | . . . . 5 ⊢ ( ⊤ → Ⅎxφ) |
4 | 2 | nfal 1842 | . . . . . 6 ⊢ Ⅎx∀yφ |
5 | 4 | a1i 10 | . . . . 5 ⊢ ( ⊤ → Ⅎx∀yφ) |
6 | 3, 5 | nfimd 1808 | . . . 4 ⊢ ( ⊤ → Ⅎx(φ → ∀yφ)) |
7 | 6 | trud 1323 | . . 3 ⊢ Ⅎx(φ → ∀yφ) |
8 | 7 | nfal 1842 | . 2 ⊢ Ⅎx∀y(φ → ∀yφ) |
9 | 1, 8 | nfxfr 1570 | 1 ⊢ ℲxℲyφ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤ wtru 1316 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |