NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnf GIF version

Theorem nfnf 1845
Description: If x is not free in φ, it is not free in yφ. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfal.1 xφ
Assertion
Ref Expression
nfnf xyφ

Proof of Theorem nfnf
StepHypRef Expression
1 df-nf 1545 . 2 (Ⅎyφy(φyφ))
2 nfal.1 . . . 4 xφ
32nfal 1842 . . . 4 xyφ
42, 3nfim 1813 . . 3 x(φyφ)
54nfal 1842 . 2 xy(φyφ)
61, 5nfxfr 1570 1 xyφ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfnfc  2496
  Copyright terms: Public domain W3C validator