| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfnf | GIF version | ||
| Description: If x is not free in φ, it is not free in Ⅎyφ. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎxφ |
| Ref | Expression |
|---|---|
| nfnf | ⊢ ℲxℲyφ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1545 | . 2 ⊢ (Ⅎyφ ↔ ∀y(φ → ∀yφ)) | |
| 2 | nfal.1 | . . . 4 ⊢ Ⅎxφ | |
| 3 | 2 | nfal 1842 | . . . 4 ⊢ Ⅎx∀yφ |
| 4 | 2, 3 | nfim 1813 | . . 3 ⊢ Ⅎx(φ → ∀yφ) |
| 5 | 4 | nfal 1842 | . 2 ⊢ Ⅎx∀y(φ → ∀yφ) |
| 6 | 1, 5 | nfxfr 1570 | 1 ⊢ ℲxℲyφ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfnfc 2496 |
| Copyright terms: Public domain | W3C validator |