New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (φ ↔ ψ) |
nfxfr.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfxfr | ⊢ Ⅎxφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 ⊢ Ⅎxψ | |
2 | nfbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 2 | nfbii 1569 | . 2 ⊢ (Ⅎxφ ↔ Ⅎxψ) |
4 | 1, 3 | mpbir 200 | 1 ⊢ Ⅎxφ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-nf 1545 |
This theorem is referenced by: nfnf1 1790 nfnan 1825 nfanOLD 1826 nf3an 1827 nfbiOLD 1835 nfor 1836 nf3or 1837 nfexOLD 1844 nfnf 1845 nfnfOLD 1846 nfs1f 2030 nfeu1 2214 nfmo1 2215 sb8eu 2222 nfnfc1 2493 nfnfc 2496 nfeq 2497 nfel 2498 nfne 2611 nfnel 2612 nfra1 2665 nfrex 2670 nfre1 2671 nfreu1 2782 nfrmo1 2783 nfrmo 2787 nfss 3267 sb8iota 4347 nffun 5131 nffn 5181 nff 5222 nff1 5257 nffo 5269 nff1o 5286 nfiso 5488 |
Copyright terms: Public domain | W3C validator |