NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-isw2 GIF version

Theorem nic-isw2 1446
Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-isw2.1 (ψ (θ φ))
Assertion
Ref Expression
nic-isw2 (ψ (φ θ))

Proof of Theorem nic-isw2
StepHypRef Expression
1 nic-isw2.1 . . 3 (ψ (θ φ))
2 nic-swap 1444 . . . 4 ((φ θ) ((θ φ) (θ φ)))
32nic-imp 1440 . . 3 ((ψ (θ φ)) (((φ θ) ψ) ((φ θ) ψ)))
41, 3nic-mp 1436 . 2 ((φ θ) ψ)
54nic-isw1 1445 1 (ψ (φ θ))
Colors of variables: wff setvar class
Syntax hints:   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nic-bi1  1453  nic-bi2  1454  nic-luk1  1456  nic-luk2  1457
  Copyright terms: Public domain W3C validator