New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-isw2 | GIF version |
Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-isw2.1 | ⊢ (ψ ⊼ (θ ⊼ φ)) |
Ref | Expression |
---|---|
nic-isw2 | ⊢ (ψ ⊼ (φ ⊼ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-isw2.1 | . . 3 ⊢ (ψ ⊼ (θ ⊼ φ)) | |
2 | nic-swap 1444 | . . . 4 ⊢ ((φ ⊼ θ) ⊼ ((θ ⊼ φ) ⊼ (θ ⊼ φ))) | |
3 | 2 | nic-imp 1440 | . . 3 ⊢ ((ψ ⊼ (θ ⊼ φ)) ⊼ (((φ ⊼ θ) ⊼ ψ) ⊼ ((φ ⊼ θ) ⊼ ψ))) |
4 | 1, 3 | nic-mp 1436 | . 2 ⊢ ((φ ⊼ θ) ⊼ ψ) |
5 | 4 | nic-isw1 1445 | 1 ⊢ (ψ ⊼ (φ ⊼ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-bi1 1453 nic-bi2 1454 nic-luk1 1456 nic-luk2 1457 |
Copyright terms: Public domain | W3C validator |