| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nic-swap | GIF version | ||
| Description: ⊼ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-swap | ⊢ ((θ ⊼ φ) ⊼ ((φ ⊼ θ) ⊼ (φ ⊼ θ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nic-id 1443 | . 2 ⊢ (φ ⊼ (φ ⊼ φ)) | |
| 2 | nic-ax 1438 | . 2 ⊢ ((φ ⊼ (φ ⊼ φ)) ⊼ ((τ ⊼ (τ ⊼ τ)) ⊼ ((θ ⊼ φ) ⊼ ((φ ⊼ θ) ⊼ (φ ⊼ θ))))) | |
| 3 | 1, 2 | nic-mp 1436 | 1 ⊢ ((θ ⊼ φ) ⊼ ((φ ⊼ θ) ⊼ (φ ⊼ θ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊼ wnan 1287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
| This theorem is referenced by: nic-isw1 1445 nic-isw2 1446 nic-bijust 1452 nic-luk1 1456 |
| Copyright terms: Public domain | W3C validator |