NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nineq12i GIF version

Theorem nineq12i 3240
Description: Equality inference for anti-intersection. (Contributed by SF, 11-Jan-2015.)
Hypotheses
Ref Expression
nineqi.1 A = B
nineq12i.2 C = D
Assertion
Ref Expression
nineq12i (AC) = (BD)

Proof of Theorem nineq12i
StepHypRef Expression
1 nineqi.1 . 2 A = B
2 nineq12i.2 . 2 C = D
3 nineq12 3237 . 2 ((A = B C = D) → (AC) = (BD))
41, 2, 3mp2an 653 1 (AC) = (BD)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cnin 3205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212
This theorem is referenced by:  dfin5  3546
  Copyright terms: Public domain W3C validator