New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ori | GIF version |
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
ori.1 | ⊢ (φ ∨ ψ) |
Ref | Expression |
---|---|
ori | ⊢ (¬ φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ori.1 | . 2 ⊢ (φ ∨ ψ) | |
2 | df-or 359 | . 2 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (¬ φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: 3ori 1242 mtp-or 1538 moexex 2273 mo2icl 3016 mosubopt 4613 |
Copyright terms: Public domain | W3C validator |