NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.65 GIF version

Theorem pm2.65 164
Description: Theorem *2.65 of [WhiteheadRussell] p. 107. Proof by contradiction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Mar-2013.)
Assertion
Ref Expression
pm2.65 ((φψ) → ((φ → ¬ ψ) → ¬ φ))

Proof of Theorem pm2.65
StepHypRef Expression
1 idd 21 . 2 ((φψ) → (¬ φ → ¬ φ))
2 con3 126 . 2 ((φψ) → (¬ ψ → ¬ φ))
31, 2jad 154 1 ((φψ) → ((φ → ¬ ψ) → ¬ φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm4.82  894
  Copyright terms: Public domain W3C validator