| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > jad | GIF version | ||
| Description: Deduction form of ja 153. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| jad.1 | ⊢ (φ → (¬ ψ → θ)) |
| jad.2 | ⊢ (φ → (χ → θ)) |
| Ref | Expression |
|---|---|
| jad | ⊢ (φ → ((ψ → χ) → θ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jad.1 | . . . 4 ⊢ (φ → (¬ ψ → θ)) | |
| 2 | 1 | com12 27 | . . 3 ⊢ (¬ ψ → (φ → θ)) |
| 3 | jad.2 | . . . 4 ⊢ (φ → (χ → θ)) | |
| 4 | 3 | com12 27 | . . 3 ⊢ (χ → (φ → θ)) |
| 5 | 2, 4 | ja 153 | . 2 ⊢ ((ψ → χ) → (φ → θ)) |
| 6 | 5 | com12 27 | 1 ⊢ (φ → ((ψ → χ) → θ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.6 162 pm2.65 164 merco2 1501 nfimdOLD 1809 hbimdOLD 1816 ax11indi 2196 |
| Copyright terms: Public domain | W3C validator |