New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jad | GIF version |
Description: Deduction form of ja 153. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
jad.1 | ⊢ (φ → (¬ ψ → θ)) |
jad.2 | ⊢ (φ → (χ → θ)) |
Ref | Expression |
---|---|
jad | ⊢ (φ → ((ψ → χ) → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jad.1 | . . . 4 ⊢ (φ → (¬ ψ → θ)) | |
2 | 1 | com12 27 | . . 3 ⊢ (¬ ψ → (φ → θ)) |
3 | jad.2 | . . . 4 ⊢ (φ → (χ → θ)) | |
4 | 3 | com12 27 | . . 3 ⊢ (χ → (φ → θ)) |
5 | 2, 4 | ja 153 | . 2 ⊢ ((ψ → χ) → (φ → θ)) |
6 | 5 | com12 27 | 1 ⊢ (φ → ((ψ → χ) → θ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.6 162 pm2.65 164 merco2 1501 nfimdOLD 1809 hbimdOLD 1816 ax11indi 2196 |
Copyright terms: Public domain | W3C validator |