NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.82 GIF version

Theorem pm4.82 894
Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.82 (((φψ) (φ → ¬ ψ)) ↔ ¬ φ)

Proof of Theorem pm4.82
StepHypRef Expression
1 pm2.65 164 . . 3 ((φψ) → ((φ → ¬ ψ) → ¬ φ))
21imp 418 . 2 (((φψ) (φ → ¬ ψ)) → ¬ φ)
3 pm2.21 100 . . 3 φ → (φψ))
4 pm2.21 100 . . 3 φ → (φ → ¬ ψ))
53, 4jca 518 . 2 φ → ((φψ) (φ → ¬ ψ)))
62, 5impbii 180 1 (((φψ) (φ → ¬ ψ)) ↔ ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator