| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.82 | GIF version | ||
| Description: Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.82 | ⊢ (((φ → ψ) ∧ (φ → ¬ ψ)) ↔ ¬ φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65 164 | . . 3 ⊢ ((φ → ψ) → ((φ → ¬ ψ) → ¬ φ)) | |
| 2 | 1 | imp 418 | . 2 ⊢ (((φ → ψ) ∧ (φ → ¬ ψ)) → ¬ φ) |
| 3 | pm2.21 100 | . . 3 ⊢ (¬ φ → (φ → ψ)) | |
| 4 | pm2.21 100 | . . 3 ⊢ (¬ φ → (φ → ¬ ψ)) | |
| 5 | 3, 4 | jca 518 | . 2 ⊢ (¬ φ → ((φ → ψ) ∧ (φ → ¬ ψ))) |
| 6 | 2, 5 | impbii 180 | 1 ⊢ (((φ → ψ) ∧ (φ → ¬ ψ)) ↔ ¬ φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |