NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.65i GIF version

Theorem pm2.65i 165
Description: Inference rule for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1 (φψ)
pm2.65i.2 (φ → ¬ ψ)
Assertion
Ref Expression
pm2.65i ¬ φ

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3 (φ → ¬ ψ)
21con2i 112 . 2 (ψ → ¬ φ)
3 pm2.65i.1 . . 3 (φψ)
43con3i 127 . 2 ψ → ¬ φ)
52, 4pm2.61i 156 1 ¬ φ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mto  167  mt2  170  noel  3555
  Copyright terms: Public domain W3C validator