![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ A ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3388 | . . 3 ⊢ (A ∈ (V ∖ V) → A ∈ V) | |
2 | eldifn 3389 | . . 3 ⊢ (A ∈ (V ∖ V) → ¬ A ∈ V) | |
3 | 1, 2 | pm2.65i 165 | . 2 ⊢ ¬ A ∈ (V ∖ V) |
4 | df-nul 3551 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2417 | . 2 ⊢ (A ∈ ∅ ↔ A ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 290 | 1 ⊢ ¬ A ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 1710 Vcvv 2859 ∖ cdif 3206 ∅c0 3550 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-nul 3551 |
This theorem is referenced by: n0i 3555 n0f 3558 rex0 3563 abvor0 3567 rab0 3571 un0 3575 in0 3576 0ss 3579 r19.2zb 3640 ral0 3654 int0 3940 iun0 4022 0iun 4023 vinf 4555 xp0r 4842 dm0 4918 dm0rn0 4921 dmeq0 4922 cnv0 5031 co02 5092 co01 5093 fv01 5354 clos10 5887 po0 5939 connex0 5940 |
Copyright terms: Public domain | W3C validator |