New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ A ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3389 | . . 3 ⊢ (A ∈ (V ∖ V) → A ∈ V) | |
2 | eldifn 3390 | . . 3 ⊢ (A ∈ (V ∖ V) → ¬ A ∈ V) | |
3 | 1, 2 | pm2.65i 165 | . 2 ⊢ ¬ A ∈ (V ∖ V) |
4 | df-nul 3552 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2417 | . 2 ⊢ (A ∈ ∅ ↔ A ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 290 | 1 ⊢ ¬ A ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: n0i 3556 n0f 3559 rex0 3564 abvor0 3568 rab0 3572 un0 3576 in0 3577 0ss 3580 r19.2zb 3641 ral0 3655 int0 3941 iun0 4023 0iun 4024 vinf 4556 xp0r 4843 dm0 4919 dm0rn0 4922 dmeq0 4923 cnv0 5032 co02 5093 co01 5094 fv01 5355 clos10 5888 po0 5940 connex0 5941 |
Copyright terms: Public domain | W3C validator |