NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.35 GIF version

Theorem pm3.35 570
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
Assertion
Ref Expression
pm3.35 ((φ (φψ)) → ψ)

Proof of Theorem pm3.35
StepHypRef Expression
1 pm2.27 35 . 2 (φ → ((φψ) → ψ))
21imp 418 1 ((φ (φψ)) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  2reu5  3045  intab  3957  fnfrec  6321
  Copyright terms: Public domain W3C validator