| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.78 | GIF version | ||
| Description: Theorem *4.78 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm4.78 | ⊢ (((φ → ψ) ∨ (φ → χ)) ↔ (φ → (ψ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orordi 516 | . 2 ⊢ ((¬ φ ∨ (ψ ∨ χ)) ↔ ((¬ φ ∨ ψ) ∨ (¬ φ ∨ χ))) | |
| 2 | imor 401 | . 2 ⊢ ((φ → (ψ ∨ χ)) ↔ (¬ φ ∨ (ψ ∨ χ))) | |
| 3 | imor 401 | . . 3 ⊢ ((φ → ψ) ↔ (¬ φ ∨ ψ)) | |
| 4 | imor 401 | . . 3 ⊢ ((φ → χ) ↔ (¬ φ ∨ χ)) | |
| 5 | 3, 4 | orbi12i 507 | . 2 ⊢ (((φ → ψ) ∨ (φ → χ)) ↔ ((¬ φ ∨ ψ) ∨ (¬ φ ∨ χ))) |
| 6 | 1, 2, 5 | 3bitr4ri 269 | 1 ⊢ (((φ → ψ) ∨ (φ → χ)) ↔ (φ → (ψ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |