New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inundif | GIF version |
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inundif | ⊢ ((A ∩ B) ∪ (A ∖ B)) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . . 4 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
2 | eldif 3222 | . . . 4 ⊢ (x ∈ (A ∖ B) ↔ (x ∈ A ∧ ¬ x ∈ B)) | |
3 | 1, 2 | orbi12i 507 | . . 3 ⊢ ((x ∈ (A ∩ B) ∨ x ∈ (A ∖ B)) ↔ ((x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ ¬ x ∈ B))) |
4 | pm4.42 926 | . . 3 ⊢ (x ∈ A ↔ ((x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ ¬ x ∈ B))) | |
5 | 3, 4 | bitr4i 243 | . 2 ⊢ ((x ∈ (A ∩ B) ∨ x ∈ (A ∖ B)) ↔ x ∈ A) |
6 | 5 | uneqri 3407 | 1 ⊢ ((A ∩ B) ∪ (A ∖ B)) = A |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: phialllem2 4618 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |